Estimating River Discharges in Ungauged Catchments Using the Slope–Area Method and Unmanned Aerial Vehicle

2019 
River discharge is of great significance in the development of water resources and ecological protection. There are several large ungauged catchments around the word still lacking sufficient hydrological data. Obtaining accurate hydrological information from these areas is an important scientific issue. New data and methods must be used to address this issue. In this study, a new method that couples unmanned aerial vehicle (UAV) data with the classical slope–area method is developed to calculate river discharges in typical ungauged catchments. UAV data is used to obtain topographic information of the river channels. In situ experiments are carried out to validate the river data. Based on slope–area method, namely the Manning–Strickler formula (M–S), Saint-Venant system of equivalence (which has two definitions, S-V-1 and S-V-2), and the Darcy–Weisbach equivalence (D–W) are used to estimate river discharge in ten sections of the Tibet Plateau and Dzungaria Basin. Results show that the overall qualification rate of the calculated discharge is 70% and the average Nash–Sutcliffe efficiency coefficient is 0.97, indicating strong practical application in the study area. When the discharge is less than 10 m3⁄s, D–W is the most appropriate method; M–S and S-V-1 are better than other methods when the discharge is between 10 m3⁄s and 50 m3⁄s. However, if the discharge is greater than 50 m3⁄s, S-V-2 provides the most accurate results. Furthermore, we found that hydraulic radius is an important parameter in the slope–area method. This study offers a quick and convenient solution to extract hydrological information in ungauged catchments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    15
    Citations
    NaN
    KQI
    []