On the Bounds of Weak $(1,1)$ Norm of Hardy-Littlewood Maximal Operator with $L\log L({\mathbb S^{n-1}})$ Kernels

2021 
Let $\Omega\in L^1{({\mathbb S^{n-1}})}$, be a function of homogeneous of degree zero, and $M_\Omega$ be the Hardy-Littlewood maximal operator associated with $\Omega$ defined by $M_\Omega(f)(x) = \sup_{r>0}\frac1{r^n}\int_{|x-y| \lambda\}| = n^{-1}\|\Omega\|_{L^1({\mathbb S^{n-1}})}\|f\|_{L^1({\mathbb R^n})}.$$ This removes the smoothness restrictions on the kernel $\Omega$, such as Dini-type conditions, in previous results. To prove our result, we present a new upper bound of $\|M_\Omega\|_{L^1\to L^{1,\infty}}$, which essentially improves the upper bound $C(\|\Omega\|_{L\log L({\mathbb S^{n-1}})}+1)$ given by Christ and Rubio de Francia. As a consequence, the upper and lower bounds of $\|M_\Omega\|_{L^1\to L^{1,\infty}}$ are obtained for $\Omega\in L\log L {({\mathbb S^{n-1}})}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []