Many-Server Heavy-Traffic Limits for Queueing Systems with Perfectly Correlated Service and Patience Times.

2020 
We characterize heavy-traffic process and steady-state limits for systems staffed according to the square-root safety rule, when the service requirements of the customers are perfectly correlated with their individual patience for waiting in queue. Under the usual many-server diffusion scaling, we show that the system is asymptotically equivalent to a system with no abandonment. In particular, the limit is the Halfin-Whitt diffusion for the $M/M/n$ queue when the traffic intensity approaches its critical value $1$ from below, and is otherwise a transient diffusion, despite the fact that the prelimit is positive recurrent. To obtain a refined measure of the congestion due to the correlation, we characterize a lower-order fluid (LOF) limit for the case in which the diffusion limit is transient, demonstrating that the queue in this case scales like $n^{3/4}$. Under both the diffusion and LOF scalings, we show that the stationary distributions converge weakly to the time-limiting behavior of the corresponding process limit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []