Probing the interaction of anthraquinone with DNA by spectroscopy, molecular modeling and cancer cell imaging technique

2015 
Abstract A new anthraquinone derivative, (E)-2-(1-(4,5-dihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxyimino)ethyl)-1,4-dihydroxyanthracene-9,10-dione (AODGlc), was synthesized and its binding properties towards DNA were explored under physiological conditions by fluorescence spectroscopy, DNA melting as well as docking techniques. The experimental results revealed that AODGlc could bind to calf thymus DNA (ctDNA) through intercalation between DNA base pairs. The values of thermodynamic parameters at different temperatures including Δ G , Δ H , and Δ S and the molecular modeling study implied that hydrophobic interactions and hydrogen bonds were the main interactions in the AODGlc–ctDNA system. Cervical cancer cells (HepG2 cells) were used in cell viability assay and cell imaging experiment. AODGlc could interact with HepG2 cells and kill HepG2 cells under high concentration with nice curative effect, indicating its potential bioapplication in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    11
    Citations
    NaN
    KQI
    []