Thermoreversible crosslinking rubber using supramolecular hydrogen bonding networks

2002 
Thermoreversible crosslinking rubber (TRC-IR) was easily synthesized by modification of isoprene rubber (IR) with maleic anhydride followed by the addition of 3-amino-1,2,4-triazole (ATA), in solid phase. The mechanical properties of the resulting rubber were more similar to the sulfur-vulcanized rubber than general thermoplastic elastomers (ex. SEBS). Although the tensile strength and elongation at break were lower than those of a corresponding sulfur-vulcanized rubber, the moduli were as high as those of sulfur-cured rubber. Re-molding of TRC-IR could he repeated more than 10 times without significantly changing its mechanical properties. Differential scanning calorimetry (DSC) and infrared analyses revealed that the superior mechanical properties and good recyclability are attributable to the strong hydrogen bonding. The TRC-IR showed an endothermic transition peak at around 185 °C on the DSC chart, indicating cleavage of the hydrogen bonding. Infrared analyses also revealed that the absorption peaks of carboxylic acid were shifted to a lower region by the strong hydrogen bonding. The thermoreversible crosslinking system was also applied to EPM, EBM (ethylene-butene rubber), and IIR. These rubbers also showed superior mechanical properties as well as excellent recyclability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    20
    Citations
    NaN
    KQI
    []