I03 CPEB alteration and aberrant transcriptome-polyadenylation unveil a treatable vitamin B1 deficiency in huntington’s disease

2021 
Background Although promising gene-silencing therapies are being tested for Huntington’s disease (HD), no disease-modifying treatments are available. Thus, study of molecular mechanisms underneath Htt-mutation must continue to identify easily druggable targets. Cytoplasmic polyadenylation element binding proteins 1–4 (CPEB1–4) are RNA-binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Alteration of CPEB-dependent transcriptome polyadenylation has been associated to diseases like cancer, autism and epilepsy. Aims Analyze CPEBs and polyadenylation in HD. Identify easily druggable targets among genes mis-expressed due to altered CPEB-dependent polyadenylation, to assay them in HD mice. Methods a) Western blot and immunostaining of CPEBs in brains of HD patients and mouse models. b) Genome-wide poly(A)-tail analysis through poly(U) chromatography+gene chip. c) status of CPEB targets and related metabolites by western blot and HPLC. d) radiological, neuropathological and behavioural analysis of HD mice receiving target-related treatment. Results There is a CPEB1/4 imbalance in HD striatum with concomitant altered transcriptome polyadenylation affecting many neurodegeneration-linked genes like PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS and HTT. Among top deadenylated genes was SLC19A3 (ThTr2 thiamine transporter) whose mutation causes biotin+thiamine responsive basal ganglia disease (BTBGD). Decreased ThTr2 in HD and HD mice led us to discover that HD is in part a BTBG-like thiamine deficiency. Remarkably, high dose biotin+thiamine treatment prevented the thiamine deficiency of HD mice and attenuated their radiological, neuropathological and motor phenotypes. Conclusions This study unveils altered polyadenylation as a new molecular mechanism in neurodegeneration uncovering HD as a thiamine deficiency and, therefore, an easy to implement therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []