Molecular imaging of p53 signal pathway in lung cancer cell cycle arrest induced by cisplatin

2013 
Cisplatin is a commonly employed chemotherapy drug for lung malignancy. However its efficacy is limited by acquired drug resistance and lacking of an in vivo real-time monitoring approach. The aim of this study is to investigate the effect of cisplatin on lung adenocarcinoma cell line p53-RE-Fluc/A549 in vivo via non-invasive reporter gene by molecular imaging. For this study, we employed p53-RE-Fluc/A549 cells that overexpressed a vector with three tandem repeats of p53 response element followed by the luciferase reporter gene. P53 activity was evaluated by optical imaging and verified by Western blot after cells were exposed to 10 µM cisplatin for 72 h. The cell cycle was mainly blocked at the S- and G2/M-phases after cisplatin treatment, whereas no significant change was observed in cell apoptotic index. Increased expression of p21 and Bcl-2 as well as decreased expression of Bax were observed after cisplatin treatment by Western blotting. Longitudinal in vivo bioluminescent imaging (BLI) revealed that the p53 activity was increased from 24 to 48 h after transient cisplatin treatment in p53-RE-Fluc/A549-bearing nude mice. RNA sequencing further revealed that cell cycle and p53 signaling pathway genes, such as E2F1, CCNA2, CDK1, and CCNE2 were significantly downregulated after long-term cisplatin treatment. Thus, our study showed that cisplatin exerts its cytotoxic effect through blockage of the cell cycle and may be partly regulated by the p53 signaling pathway. Furthermore, molecular imaging is a useful tool to investigate the mechanism and evaluate the effect of chemotherapy drugs both in vivo and in vitro. © 2012 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    20
    Citations
    NaN
    KQI
    []