A Design of Back-Drivable Tendon-Driven Mechanism on Robotic Finger

2021 
To adapt the robot to the human environment, it is necessary to implement the robot's dexterity and force control. To achieve each of these functions, there are studies on tendon-driven hands that generate extension torque with springs and studies on wideband sensing using a disturbance observer (DOB), but few studies integrate them. In this paper, in order to their integration, we proposed a robotic finger whose tendon routing is improved from FLLEX that is considered to be the most effective for wideband sensing using DOB among the existing tendon-driven hands that generate extension torque with a spring. In order to confirm the effectiveness of the proposed robot finger, we conducted an experiment to evaluate the force transmission performance for the finger that reproduced the tendon routing of FLLEX and the proposed robot finger, and compared the results obtained in each experiment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []