Recycling of silicon scraps by directional solidification coupled with alternating electromagnetic field and its electrical property

2020 
Abstract In this paper, alternating electromagnetic field and directional solidification are used to separate SiC and Si3N4 in polycrystalline silicon tailings. It is found the inclusion particles move downward at the center of the ingot and moving upward at the edge of the ingot by a variety of forces during the directional solidification process. The electromagnetic force accelerates the melt flow and enhances the lift force, so that larger particles can be pushed to the top of the ingot. Rod-shaped Si3N4 and block-shaped SiC particles show symbiotic relationship between each other. The aggregation of inclusion particles adsorbs metallic impurities, especially volatile metals, due to the effects of mushy region and short-circuit diffusion. The average conversion efficiency of the solar cells (Al-BSF method) prepared using the recycled silicon reached 18.56%, which meets the demand of the solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []