High-Level Production of Plasmid DNA by E. coli DH5α/sacB by Introducing inc Mutations

2014 
For small copy number pUC-type plasmids, the inc1 and inc2 mutations, which deregulate replication, were previously found to increase the plasmid copy number by six to seven-fold. Because plasmids can exert a growth burden, it was not clear if further amplification of copy number would occur due to inc mutations when the starting point for plasmid copy number was orders of magnitude higher. To investigate further the effects of the inc mutations and the possible limits of plasmid synthesis, the parent plasmid pNTC8485 was used as a starting point. It lacks an antibiotic resistance gene and has a copy number of ∼1,200 per chromosome. During early stationary phase growth in the LB broth at 37°C, inc2 mutants of pNTC8485 exhibited a copy number of ∼7,000 per chromosome. In the minimal medium at late log growth, the copy number was found to be significantly increased to approximately 15,000. In an attempt to further increase the plasmid titer (plasmid mass/culture volume), enzymatic hydrolysis of the selection agent, sucrose, at late log growth extended growth and tripled the total plasmid amount such that an approximately 80-fold gain in total plasmid was obtained compared to the typical pUC-type vectors. Finally, when grown in minimal medium, no detectable impact on the exponential growth rate or the fidelity of genomic or plasmid DNA replication was found in cells with deregulated plasmid replication. The use of inc mutations and the sucrose degradation method presents a simplified way for attaining high titers of plasmid DNA for various applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []