Functional Characterization of Shape Memory CuZnAl Open-Cell Foams by Molten Metal Infiltration

2011 
In the recent years, the research for novel materials with tailored mechanical properties, as well as functional properties, has encouraged the study of porous and cellular materials. Our previous work proposed and reported about the possibility to manufacture open-cell metal foams of CuZnAl shape memory alloy by liquid infiltration in a leachable bed of silica-gel particles. This innovative methodology is based on cheap commercial consumables and a simple technology, focusing on intermediate-density low-cost foams with interesting cost/benefits ratio. Microstructural analyses on foamed specimens showed uniform microstructure of ligaments and a very regular and well reproducible open-cell morphology. Moreover, calorimetric analysis detected a thermo-elastic martensitic transformation in the foamed material. In this study, a CuZnAl shape memory alloy was considered and tested to clarify possible effects of the foaming process on the functional properties of the material. Morphological, calorimetric, and thermo-mechanical analyses were carried out. The results show that it is possible to produce metal foams of CuZnAl shape memory alloy with different functional properties and able to recover mono-axial compressive strains up to 3%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    13
    Citations
    NaN
    KQI
    []