Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation.

2020 
Cerebellar neurons can signal sensory and motor events, but their role in active sensorimotor processing remains unclear. We record and manipulate Purkinje cell activity during a task that requires mice to rapidly discriminate between multisensory and unisensory stimuli before motor initiation. Neuropixels recordings show that both sensory stimuli and motor initiation are represented by short-latency simple spikes. Optogenetic manipulation of short-latency simple spikes abolishes or delays motor initiation in a rate-dependent manner, indicating a role in motor initiation and its timing. Two-photon calcium imaging reveals task-related coherence of complex spikes organized into conserved alternating parasagittal stripes. The coherence of sensory-evoked complex spikes increases with learning and correlates with enhanced temporal precision of motor initiation. These results suggest that both simple spikes and complex spikes govern sensory-driven motor initiation: simple spikes modulate its latency, and complex spikes refine its temporal precision, providing specific cellular substrates for cerebellar sensorimotor control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    4
    Citations
    NaN
    KQI
    []