Multi-wavelength study of flaring activity in HBL 1ES 1959+650 during 2015-16

2017 
We present the results from a multiwavelength study of the flaring activity in HBL, 1ES 1959+650, during January 2015-June 2016. The source underwent significant flux enhancements showing two major outbursts (March 2015 and October 2015) in optical, UV, X-rays and gamma-rays. Normally, HBLs are not very active but 1ES 1959+650 has shown exceptional outburst activity across the whole electromagnetic spectrum (EMS). We used the data from Fermi-LAT, Swift-XRT & UVOT and optical data from Mt. Abu InfraRed Observatory (MIRO) along with archival data from Steward Observatory to look for possible connections between emissions at different energies and the nature of variability during flaring state. During October 2015 outburst, thirteen nights of optical follow-up observations showed brightest and the faintest nightly averaged V-band magnitudes as 14.45(0.03) and 14.85(0.02), respectively. In optical, the source showed a hint of optical intra-night variability during the outburst. A significant short-term variability in optical during MJD 57344 to MJD 57365 and in gamma-rays during MJD 57360 and MJD 57365 was also noticed. Multiwavelength study suggests the flaring activity at all frequencies to be correlated in general, albeit with diverse flare durations. We estimated the strength of the magnetic field as 4.21 G using the time-lag between optical and UV bands as synchrotron cooling time scale (2.34 hrs). The upper limits on the sizes of both the emission regions, gamma-ray and optical, are estimated to be of the order of 10^16cm using shortest variability time scales. The quasi-simultaneous flux enhancements in 15 GHz and VHE gamma-ray emissions indicates to a fresh injection of plasma into the jet, which interacts with a standing sub-mm core resulting in co-spatial emissions across the EMS. The complex and prolonged behavior of the second outburst in October 2015 is discussed in detail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    106
    References
    21
    Citations
    NaN
    KQI
    []