In Vivo Pharmacodynamic Target Investigation of Two Bacterial Topoisomerase Inhibitors, ACT-387042 and ACT-292706, in the Neutropenic Murine Thigh Model against Streptococcus pneumoniae and Staphylococcus aureus.

2016 
ABSTRACT ACT-387042 and ACT-292706 are two novel bacterial topoisomerase inhibitors with broad-spectrum activity against Gram-positive and -negative bacteria, including methicillin-resistant Staphylococcus aureus and penicillin- and fluoroquinolone-resistant Streptococcus pneumoniae. We used the neutropenic murine thigh infection model to characterize the pharmacokinetics (PK)/pharmacodynamics (PD) of these investigational compounds against a group of 10 S. aureus and S. pneumoniae isolates with phenotypic resistance to beta-lactams and fluoroquinolones. The in vitro activities of the two compounds were very similar (MIC range, 0.03 to 0.125 mg/liter). Plasma pharmacokinetics were determined for each compound by using four escalating doses administered by the subcutaneous route. In treatment studies, mice had 10 7.4 to 10 8 CFU/thigh at the start of therapy with ACT-387042 and 10 6.7 to 10 8.3 CFU/thigh at the start of therapy with ACT-292706. A dose-response relationship was observed with all isolates over the dose range. Maximal kill approached 3 to 4 log 10 CFU/thigh compared to the burden at the start of therapy for the highest doses examined. There was a strong relationship between the PK/PD index AUC/MIC ratio (area under the concentration-time curve over 24 h in the steady state divided by the MIC) and therapeutic efficacy in the model ( R 2 , 0.63 to 0.82). The 24-h free-drug AUC/MIC ratios associated with net stasis for ACT-387042 against S. aureus and S. pneumoniae were 43 and 10, respectively. The 24-h free-drug AUC/MIC ratios associated with net stasis for ACT-292706 against S. aureus and S. pneumoniae were 69 and 25, respectively. The stasis PD targets were significantly lower for S. pneumoniae ( P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    9
    Citations
    NaN
    KQI
    []