"Impact of ICA Dimensionality on the Test-Retest Reliability of Resting-State Functional Connectivity.

2021 
As resting-state functional connectivity (rsFC) research moves toward the study of individual differences, test-retest reliability is increasingly important to understand. Previous literature supports the test-retest reliability of rsFC derived with independent component analysis (ICA) and dual regression, yet the impact of dimensionality (i.e., the number of components to extract from group-ICA) remained obscure in the current context of large-scale datasets. To provide principled guidelines on this issue, ICA at dimensionalities varying from 25 to 350 was applied to the cortical surface with resting-state functional magnetic resonance imaging data from 1003 participants in the Human Connectome Project. The reliability of two rsFC measures: (within-component) coherence and (between-component) connectivity was estimated. Reliability and its change with dimensionality varied by network: the cognitive (frontoparietal, cingulo-opercular, dorsal attention, and default) networks were measured with the highest reliability which improved with increased dimensionality until at least 150; the visual and somatomotor networks were measured with lower reliability which benefited mildly from increased dimensionality; the temporal pole/orbitofrontal cortex (TP/OFC) network was measured with the lowest reliability. Overall, ICA reliability was optimized at dimensionalities of 150 or above. Compared with two popular binary, non-overlapping cortical atlases, ICA and dual regression resulted in higher reliability for the cognitive networks, lower reliability for the somatomotor network, and similar reliability for the visual and TP/OFC networks. These findings highlight analytical decisions that maximize the reliability of rsFC measures and how they depend on one's networks of interest.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    1
    Citations
    NaN
    KQI
    []