Hierarchical Biometrical Genetic Analysis of Longitudinal Dynamics

2021 
For many phenotypes, individual scores are obtained as the parameter estimates of person-level models fit to intensive repeated measures from physiological sensors or experience sampling studies. Biometrical genetic analysis of such phenotypes is often done in a 2-step sequence: first the phenotypic parameters are estimated for each individual, then classical twin modeling is used to partition their variance. This study demonstrates deficiencies in accuracy and statistical power of the two-step approach to estimate genetic signals and advocates for the use of hierarchical models to overcome both problems. Simulations are used to demonstrate the benefits to accuracy and statistical power from a hierarchical modeling approach. A model of heart rate fluctuations was applied to experimental data from twin pairs recorded in independent trials. Results of the data application reveal moderate but uncorrelated heritabilities for two parameters of heart rate: oscillation frequency and damping ratio. By merging biometrical genetic analysis with process models, hierarchical mixed-effects modeling has potential to assist with discovery and extraction of novel phenotypes from within-person data and to validate theoretical models of within-person processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []