Exosomes and biomimetic nanovesicles-mediated anti-glioblastoma therapy: A head-to-head comparison.

2021 
Exosomes (Exos) are promising vehicles for brain drug delivery due to nanosize and the ability to breach the blood-brain barrier (BBB). But the low yield of natural exosomes limits its application for nanomedicine. The generation of bioinspired nanovesicles (BNVs) that mimicking Exos is attractive, but there is a lack of comparative evaluation of Exos and BNVs. Here, we perform the first head-to-head comparison study of Exos and BNVs for brain tumor drug delivery. We show that BNVs derived from brain-derived endothelial cells are competent alternative nanocarrier to natural exosomes. The drug-loading capacity of Exos and BNVs are similar, but the yield of BNVs is substantially higher (500-fold) than Exos. Doxorubicin (DOX)-loaded BNVs (BNV/DOX) and DOX-loaded Exos (Exo/DOX) showed similar pharmacokinetic profiles and prolonged circulation od DOX. Despite inconsistent mechanisms, BNV/DOX can across the BBB, and exhibit suppression effects similar to Exo/DOX on the progress of glioblastoma (GBM) in zebrafish and in vivo subcutaneous and orthotopic xenografts mice models, with minimal systemic toxicity. Findings from this head-to-head comparison study indicate that autologous BNVs is a effective alternative of Exos for brain tumor nanomedicine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []