The importance of black hole repositioning for galaxy formation simulations

2021 
Active galactic nucleus (AGN) feedback from accreting supermassive black holes (SMBHs) is an essential ingredient of galaxy formation simulations. The orbital evolution of SMBHs is affected by dynamical friction that cannot be predicted self-consistently by contemporary simulations of galaxy formation in representative volumes. Instead, such simulations typically use a simple "repositioning" of SMBHs, but the effects of this approach on SMBH and galaxy properties have not yet been investigated systematically. Based on a suite of smoothed particle hydrodynamics simulations with the SWIFT code and a Bondi-Hoyle-Lyttleton subgrid gas accretion model, we investigate the impact of repositioning on SMBH growth and on other baryonic components through AGN feedback. Across at least a factor ~1000 in mass resolution, SMBH repositioning (or an equivalent approach) is a necessary prerequisite for AGN feedback; without it, black hole growth is negligible. Limiting the effective repositioning speed to $\lesssim$ 10 km/s delays the onset of AGN feedback and severely limits its impact on stellar mass growth in the centre of massive galaxies. Repositioning has three direct physical consequences. It promotes SMBH mergers and thus accelerates their initial growth. In addition, it raises the peak density of the ambient gas and reduces the SMBH velocity relative to it, giving a combined boost to the accretion rate that can reach many orders of magnitude. Our results suggest that a more sophisticated and/or better calibrated treatment of SMBH repositioning is a critical step towards more predictive galaxy formation simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []