Defect Dynamics Observed by NMR of Quadrupolar Nuclei in Gallium Nitride

2004 
Hexagonal and cubic polytypes of bulk gallium nitride powders are characterized by 69,71Ga and 14N MAS NMR at 11.7 T. The (corrected) 71Ga chemical shifts are 333.0 and 357.5 ppm, respectively; the corresponding 14N chemical shifts are −301.8 and −297.0 ppm (all shifts referenced to 1 M gallium nitrate). The 69,71Ga nuclear quadrupole coupling constants (NQCC) in the hexagonal form are axially symmetric and agree with previous single-crystal determinations. The 71Ga MAS NMR satellite pattern envelope of the cubic form has a large Gaussian half-height width of 297 kHz, due to nonzero NQCC values induced by defects. The 14N MAS NMR spinning sideband pattern of the cubic form has a Lorentzian envelope half-height width of 17.5 kHz for the same reason. A sample containing both phases shows an unexpected marked loss of the 71Ga MAS NMR satellite transition intensity expected for the hexagonal phase. Static 71Ga-selective Hahn spin−echo measurements at the perpendicular edge of the powder pattern for the hexago...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    23
    Citations
    NaN
    KQI
    []