Categorizing objects from MEG signals using EEGNet

2021 
Magnetoencephalography (MEG) signals have demonstrated their practical application to reading human minds. Current neural decoding studies have made great progress to build subject-wise decoding models to extract and discriminate the temporal/spatial features in neural signals. In this paper, we used a compact convolutional neural network—EEGNet—to build a common decoder across subjects, which deciphered the categories of objects (faces, tools, animals, and scenes) from MEG data. This study investigated the influence of the spatiotemporal structure of MEG on EEGNet’s classification performance. Furthermore, the EEGNet replaced its convolution layers with two sets of parallel convolution structures to extract the spatial and temporal features simultaneously. Our results showed that the organization of MEG data fed into the EEGNet has an effect on EEGNet classification accuracy, and the parallel convolution structures in EEGNet are beneficial to extracting and fusing spatial and temporal MEG features. The classification accuracy demonstrated that the EEGNet succeeds in building the common decoder model across subjects, and outperforms several state-of-the-art feature fusing methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []