Dynamic Analysis of Beddington–DeAngelis Predator-Prey System with Nonlinear Impulse Feedback Control

2019 
In this paper, a predator-prey system with pesticide dose-responded nonlinear pulse of Beddington–DeAngelis functional response is established. First, we construct the Poincare map of the impulsive semidynamic system and discuss its main properties including the monotonicity, differentiability, fixed point, and asymptote. Second, we address the existence and globally asymptotic stability of the order-1 periodic solution and the sufficient conditions for the existence of the order-k(k ≥ 2) periodic solution. Thirdly, we give the threshold conditions for the existence and stability of boundary periodic solutions and present the parameter analysis. The results show that the pesticide dosage increases with the extension of the control period and decreases with the increase of the threshold. Besides, the state pulse feedback control can manage the pest population at a certain level and avoid excessive application of pesticides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []