The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

2017 
We reexamine the systematic properties of local galaxy populations, using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below the "main sequence" of star formation vs mass. We find an unexpectedly large population of galaxies with star formation rates intermediate between vigorously star-forming main sequence galaxies and passive galaxies, and with gas content disproportionately high for their star formation rates. Several lines of evidence suggest that these quiescent galaxies form a distinct population rather than a low star formation tail of the main sequence. We demonstrate that a tight main sequence, evolving with epoch, is a natural outcome of most histories of star formation and has little astrophysical significance, but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff in gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion requires another process, probably wind-driven mass loss. The SSFR distribution of the quiescent and passive implies that the timescale of this process must be greater than a few Gyrs but less than a few tens of Gyrs. The environmental dependence of the galaxy populations is consistent with recent theory suggesting that cold gas inflows into galaxies are truncated at earlier times in denser environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    14
    Citations
    NaN
    KQI
    []