Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz

2021 
Observations of the Galactic Center supermassive black hole Sagittarius A* (Sgr A*) with very long baseline interferometry (VLBI) are affected by interstellar scattering along our line of sight. At long radio observing wavelengths ($\gtrsim1\,$cm), the scattering heavily dominates image morphology. At 3.5 mm (86 GHz), the intrinsic source structure is no longer sub-dominant to scattering, and thus the intrinsic emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). Long-baseline detections to the phased Atacama Large Millimeter/submillimeter Array (ALMA) in 2017 provided new constraints on the intrinsic and scattering properties of Sgr A*, but the stochastic nature of the scattering requires multiple observing epochs to reliably estimate its statistical properties. We present new observations with the GMVA+ALMA, taken in 2018, which confirm non-Gaussian structure in the scattered image seen in 2017. In particular, the ALMA-GBT baseline shows more flux density than expected for an anistropic Gaussian model, providing a tight constraint on the source size and an upper limit on the dissipation scale of interstellar turbulence. We find an intrinsic source extent along the minor axis of $\sim100\,\mu$as both via extrapolation of longer wavelength scattering constraints and direct modeling of the 3.5 mm observations. Simultaneously fitting for the scattering parameters, we find an at-most modestly asymmetrical (major-to-minor axis ratio of $1.5\pm 0.2$) intrinsic source morphology for Sgr A*.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    1
    Citations
    NaN
    KQI
    []