Approaches Towards Synthetic Signal Transduction in Phospholipid Bilayers

2021 
Synthetic signal transduction is an exciting new research field that applies supramolecular chemistry in a membrane environment to provide insight into the physical processes involved in natural signal transduction and to open new opportunities in synthetic biology, for example the integration of artificial signaling pathways into cells. Although it is still a developing field, we discuss a selection of recent stimuli-responsive supramolecular constructs that, when embedded in the phospholipid bilayer, can mimic aspects of the behavior of different natural signaling proteins, including ligand-gated ion channels, G-protein coupled receptors and receptor tyrosine kinases. The lipid bilayer plays a key part in these biomimetic systems, as this complex anisotropic environment provides challenges both when designing supramolecular systems that function in the bilayer and when analyzing the data they provide. Nonetheless these recent studies have provided key insights into how the bilayer affects binding to, the conformation of, and catalysis by membrane-embedded supramolecular constructs. If successful, these model systems promise to be key components for bottom-up synthetic biology, the creation of artificial cells and devices starting from molecular components.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    0
    Citations
    NaN
    KQI
    []