Hyaluronan-Lysine Cisplatin Drug Carrier for Treatment of Localized Cancers: Pharmacokinetics, Tolerability, and Efficacy in Rodents and Canines.

2016 
The purpose of this study was to develop a safe and efficacious drug delivery platform for sustained release of cisplatin after locoregional administration. We successfully synthesized hyaluronan-cisplatin nanoconjugates (HA-Lys-Pt) using an N-Ac-lysine linker, which formed a thermodynamically stable five-membered ring with the platinum. The conjugate was characterized for release kinetics, in vitro anti-proliferative activity, degradability, impurity content, formation of Pt-DNA adducts, pharmacokinetics, tolerability in rodents and canines, and for efficacy in rodents. The 75 kD HA-Lys-Pt (75HA-Lys-Pt) sustained release of platinum with a 69 h half-life in phosphate buffered saline without substantial burst release. Compared to intravenous cisplatin, subcutaneously injected 75HA-Lys-Pt formed 3.2-fold more Pt-DNA adducts in rat peripheral blood mononuclear cells compared to intravenous cisplatin over 96 h. Subcutaneous 75HA-Lys-Pt was tolerable in rats at 40 mg/kg (4 × LD50 of conventional cisplatin) and resulted in 62.5% partial response and 37.5% stable disease in murine xenografts of head and neck squamous cell cancer (20 mg/kg/wk × 3 weeks). 75HA-Lys-Pt demonstrated extended tmax and improved area-under-the-curve compared to cisplatin in rats and canines. Canine safety was demonstrated by liver enzyme and electrolyte levels, complete blood count, and urinalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    5
    Citations
    NaN
    KQI
    []