A Water-Soluble Schiff Base Turn-on Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions at the Nanomolar Level: Application in Live-Cell Imaging.

2021 
A water-soluble Schiff base, 2,3-bis((E)-(2-hydroxy-3-methoxybenzylidene)amino) propanoic acid (ODA) prepared by condensing o-vanillin and DL-2,3-diaminopropionic acid was evaluated as an efficient “turn on” fluorescent chemosensor for the selective recognition of Al3+ and Zn2+ ions in presence of several interfering metal ions (detection limit; for Al3+ = 1.82 nM, Zn2+ = 7.06 nM). The probe also shows a selective chromogenic behavior towards Al3+ and Zn2+ ions that the naked eye can view. The binding stoichiometry was determined using 1H-NMR titration and ESI-MS spectrometry. The sensing mechanism is due to the inhibition of ESIPT and isomerization of -C=N of ODA on complexation with Al3+/Zn2+. The intramolecular hydrogen bonding energy and the critical bond energy in ODA-Al3+/Zn2+ were calculated using QTAIM analysis. The Thin Layer Chromatography (TLC) plates and strip papers loaded with ODA were used to test the practical applications for sensing Al3+ and Zn2+ ions. Moreover, the probe has been used for live-cell imaging to detect Al3+ and Zn2+ ions in hepatoma C3A and human glioblastoma U87 cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []