Connecting Classical QSAR and LERE Analyses Using Modern Molecular Calculations, LERE‐QSAR (VI): Hydrolysis of Substituted Hippuric Acid Phenyl Esters by Trypsin

2014 
The reaction mechanism of trypsin was studied by applying DFT and ab initio molecular orbital (MO) calculations to complexes of trypsin with a congeneric series of eight para-substituted hippuric acid phenyl esters, for which a previous quantitative structureactivity relationship (QSAR) study revealed nice linearity of Hammett substitution constant σ− with logarithmic values of the MichaelisMenten and catalytic rate constants. Based on the LERE procedure, we performed QSAR analyses on each elementary reaction step during the acylation process. The present calculations showed that the rate-determining step during the acylation process is the transition state (TS) between the enzymesubstrate complex (ES) and tetrahedral intermediate (TET), and that the proton transfer occurs from Ser195 to His57, not between His57 and Asp102. The LERE-QSAR analysis statistically suggested that the variation of overall free-energy changes leading to formation of TS is governed mostly by that of activation energies required to form TS from ES. In spite of a very limited number of congeneric ligands in the current work, it is critically essential to clarify and verify physicochemical meanings of a typical QSAR/Chemoinformatics parameter, Hammett σ− based on quantum chemical calculations on the proteinligand kinetics; how Hammett σ− behaves in terms of proteinligand interaction energies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    5
    Citations
    NaN
    KQI
    []