Multi-dimensional satellite observations of aerosolproperties and aerosol types over three major urbanclusters in eastern China

2021 
Abstract. Using nine years (2007–2015) of data from passive (MODIS/Aqua) and active (CALIOP/CALIPSO) satellite measurements over China, we investigate (1) the temporal and spatial variation of aerosol properties over the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) and (2) the vertical distribution of aerosol types and extinction coefficients for different aerosol optical depth (AOD) and meteorological conditions. The results show the different spatial patterns and seasonal variations of the AOD over the three regions. Annual time series reveal the occurrence of AOD maxima in 2011 over the YRD and in 2012 over the BTH and PRD; thereafter the AOD decreases steadily. Using the CALIOP vertical feature mask, the contributions of different aerosol types to the AOD were analysed: contributions of dust and polluted dust decrease from north to south, contributions of clean ocean, polluted continental, clean continental and smoke aerosol increase from south to north. In the vertical, the peak frequency of occurrence (FO) for each aerosol type depends on region and season and varies with AOD and meteorological conditions. In general, three distinct layers are observed with the peak FO at the surface (clean continental and clean marine aerosol), at ~1 km (polluted dust and polluted continental aerosol) and at ~3 km (smoke aerosol), whereas dust aerosol may occur all over the altitude range considered in this study (from the surface up to 8 km). In this study nighttime CALIOP profiles were used. The comparison with daytime profiles shows substantial differences in the FO profiles with altitude which suggest effects of boundary layer dynamics and aerosol transport on the vertical distribution of aerosol types.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    124
    References
    0
    Citations
    NaN
    KQI
    []