Onset of inverse magnetic energy transfer in collisionless turbulent plasmas.

2021 
Inverse magnetic energy transfer from small to large scales is a key physical process for the origin of large-scale strong magnetic fields in the universe. However, so far, from the magnetohydrodynamic perspective, the onset of inverse transfer is still not fully understood, especially the underlying dynamics. Here, we use both two-dimensional and three-dimensional particle-in-cell simulations to show the self-consistent dynamics of inverse transfer in collisionless decaying turbulent plasmas. Using the space filtering technique in theory and numerical analyses, we identify magnetic reconnection as the onset and fundamental drive for inverse transfer, where, specifically, the subscale electromotive force driven by magnetic reconnection do work on the large-scale magnetic field, resulting in energy transfer from small to large scales. The mechanism is also verified by the strong correlations in locations and characteristic scales between inverse transfer and magnetic reconnection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []