Mechanism Analysis of Applying Blockchain Technology to Forestry Carbon Sink Projects Based on the Differential Game Model

2021 
As an important way to reduce emission, forestry carbon sink (FCS) has not been implemented effectively. Therefore, this paper aims to analyze the effectiveness and mechanism of applying blockchain technology in FCS projects by utilizing the differential game model. A Stackelberg differential game model between forest farmers and emission-controlled enterprises (ECEs) is developed to analyze the optimal emission reduction efforts and the optimal trajectory of forest farmers and ECEs before and after introducing blockchain technology. It is found that: (1) At the initial stage of the utilization of blockchain technology, if blockchain technology takes a leading role in stabilizing carbon prices, the ECEs prefer to purchase FCS instead of reducing emissions by their own technology. On the contrary, if blockchain technology takes a leading role in stimulating the vitality of the carbon trading market, ECEs tend to use emission abatement technology to meet the carbon quote requirements. (2) In the later stage, the incentive and stabilizing effects of blockchain technology on carbon prices tend to be balanced, and the emission reduction efforts of ECEs are lower than the efforts before applying blockchain technology. (3) The application of blockchain technology increases forest farmers’ willingness to reduce emissions because of its effection of cost reduction and efficiency improvement. Meanwhile, blockchain technology reduces abatement costs by influencing carbon prices. Therefore, blockchain technology improves forest farmers’ emission reduction efforts on the whole.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []