Constructing novel fiber electrodes with porous nickel yarns for all-solid-state flexible wire-shaped supercapacitors

2020 
Wire-shaped supercapacitors (WSSCs) are one of the most promising energy storage devices for portable and wearable electronics. However, the large-scale preparation of fiber electrodes with high-mass loading of active-materials and the construction of wire-shaped devices with high capacity and excellent flexibility are still a big challenge. In this study, a novel scalable fiber electrode is developed by depositing MnO2/reduced graphene oxide (rGO) on porous nickel yarns (PNYs), named as MnO2/rGO@PNYs fiber electrodes, for the fabrication of all-solid-state flexible WSSCs. Taking advantage of the large surface area and plenty of capillary tunnels of PNYs, high loading of rGO and MnO2 active-materials are deposited onto the surface of PNYs. Using these as-fabricated MnO2/rGO@PNYs fiber electrodes, all-solid-state flexible WSSCs are assembled with the assistance of PVA/LiCl gel as both electrolyte and separator. The assembled flexible WSSCs delivers a high volume capacitance of 36.81 F cm-3 and remains 80.1% capacitance of the initial value after 3000 cycles under bending 45° operation, suggesting its outstanding cycling stability and high mechanical flexibility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []