MECHANICAL STRUCTURE DESIGN TO AVOID FRICTION-INDUCED INSTABILITIES: IN-PLANE ANISOTROPY AND IN-PLANE ASYMMETRY

2019 
The stability of a two-degree-of-freedom (2DOF) sliding system with the velocity-weakening friction was examined by the eigenvalue analysis, where the in-plane anisotropy and the in-plane asymmetry were considered. The obtained eigenvalues were organized by using the minimum modal damping ratio as the stability maps. Selecting a stable point in the stability map corresponds automatically to embedding the Yaw-Angle-Misalignment (YAM) method in the mechanical structure design to avoid the instability. If we accept the mechanical structure design of sliding systems with the in-plane anisotropy and the in-plane asymmetry, we can find new stable conditions spread widely in the two-dimensional space, which are invisible from the conventional point of view.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []