A low-flux state in IRAS 00521−7054 seen with NuSTAR and XMM–Newton: relativistic reflection and an ultrafast outflow

2019 
We present results from a deep, coordinated $XMM$-$Newton$+$NuSTAR$ observation of the Seyfert 2 galaxy IRAS 00521-7054. The $NuSTAR$ data provide the first detection of this source in high-energy X-rays ($E > 10$ keV), and the broadband data show this to be a highly complex source which exhibits relativistic reflection from the inner accretion disc, further reprocessing by more distant material, neutral absorption, and evidence for ionised absorption in an extreme, ultrafast outflow ($v_{\rm{out}} \sim 0.4c$). Based on lamppost disc reflection models, we find evidence that the central supermassive black hole is rapidly rotating ($a > 0.77$), consistent with previous estimates from the profile of the relativistic iron line, and that the accretion disc is viewed at a fairly high inclination ($i \sim 59^{\circ}$). Based on extensive simulations, we find the ultrafast outflow is detected at $\sim$4$\sigma$ significance (or greater). We also estimate that the extreme outflow should be sufficient to power galaxy-scale feedback, and may even dominate the energetics of the total output from the system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    29
    Citations
    NaN
    KQI
    []