Raman scattering from the bulk inactive out-of-plane [Formula: see text] mode in few-layer MoTe2.

2018 
: We report a study of Raman scattering in few-layer MoTe2 focused on high-frequency out-of-plane vibrational modes near 291 cm-1 which are associated with the bulk-inactive [Formula: see text] mode. Our temperature-dependent measurements reveal a double peak structure of the feature related to these modes in the Raman scattering spectra of 4- and 5-layer MoTe2. In accordance with literature data, the doublet's lower- and higher-energy components are ascribed to the Raman-active A1g/[Formula: see text] vibrations involving, respectively, only the inner and surface layers. We demonstrate a strong enhancement of the inner mode's intensity at low temperature for 1.91 eV and 1.96 eV laser light excitation which suggests a resonant character of the Raman scattering processes probed under such conditions. A resonance of the laser light with a singularity of the electronic density of states at the M point of the MoTe2 Brillouin zone is proposed to be responsible for the observed effects.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []