Microstructure of the worn surfaces of a bainitic steel railway crossing

2010 
Abstract The microstructure in the worn surfaces of a failed bainitic steel railway crossing was investigated using optical microscopy, SEM, TEM, nanoindentation and Mossbauer spectroscopy. The results indicated that a nanocrystalline layer had formed in the surface of a worn crossing during service. The formation of the nanocrystalline layer was due to the severe plastic deformation (SPD) caused by the repeated heavy loading in service by high speed train wheels. The mechanism of formation of the nanocrystalline layer was strain induced dynamic recrystallization, and the nanocrystalline grains were nucleated from the original crystals of the steel directly. The alloying elements in the worn surfaces of the steel segregated slightly by diffusion during the process of recrystallization. The nanocrystalline layer does not display the white etching layer commonly observed in ordinary railway rails, the reason may be the differences of its microstructure and carbon content with the ordinary rail steel.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    16
    Citations
    NaN
    KQI
    []