Effect of tungsten armor on electromagnetic characteristics of blanket for the fusion device under plasma disruption

2021 
Abstract Tungsten armors are arranged on the plasma side of the blankets to protect the first wall in a fusion device, such as China Fusion Engineering Test Reactor (CFETR) and European Demonstration Power Plant (EU DEMO). Tungsten armors will produce a huge eddy current and Electromagnetic (EM) load under plasma disruption due to their high conductivity and strong magnetic field environment, which will cause the blankets to be subjected to a substantial eddy current and thus heat load, thermal stress and mechanical stress, that potential could damage blankets. To evaluate the effect of the tungsten armor on the electromagnetic characteristics of blanket, electromagnetic calculation method verification is carried out. And the electromagnetic finite element model of blanket is established by using ANSYS, and the eddy current distribution in the first wall is calculated. Effects of the tungsten armor, split size and gap size of the tungsten armor on the eddy current of blanket first wall and effect of the tungsten armor on the EM force of blanket are researched. And the influence of different tungsten armor design on the thermal stress distribution of blanket first wall is also studied. The study results will provide an important reference for the blanket design of the fusion device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []