Multiple-life-stage probabilistic risk assessment for the exposure of Chinese population to PBDEs and risk managements

2018 
Abstract Studies assessing body burden of polybrominated diphenyl ethers (PBDEs) exposure have been conducted in the United States and Europe. However, the long-term assessment that is associated with multimedia exposure of PBDEs for the Chinese population is not available. The current study estimated the health risks using large PBDEs data to quantify the contributions of various media from different regions and distinguished the most vulnerable periods in life. We summarized media-specific (soil, dust, outdoor and indoor air, human milk and food) concentration of PBDEs in China from 2005 to 2016. Probabilistic risk assessment was adopted to estimate the health risks of infants, toddlers, children, teenagers and adults through ingestion, inhalation and dermal absorption. Monte Carlo simulation and sensitivity analysis were performed to quantify risk estimates uncertainties. E-waste areas had the highest PBDEs concentration, which was at least an order of magnitude higher than in other areas. BDE209 was the primary congener, accounting for 38–99% of the estimated daily intake. The dominant exposure pathway for infants was dietary intake through human milk, whereas dust ingestion was a higher contributing factor for toddlers, children, teenagers and adults. The 95th percentile of hazard index for infants and toddlers from e-waste areas of Guangdong and Zhejiang provinces exceeded one. Our estimates also suggested that infants may have the highest body burdens of PBDEs compared to other age groups. Sensitivity analyses indicated that PBDEs concentrations and ingestion rates contributed to major variances in the risk model. In this study, e-waste was found as a significant source of PBDEs, and PBDEs-containing e-waste are likely to be a threat to human health especially during early period of life. Risk strategies for better managing environmental PBDEs-exposure and human health are needed, due to the high intake of PBDEs and their persistence in the environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    11
    Citations
    NaN
    KQI
    []