Hydrogen uptake into silicon from an electron cyclotron resonance plasma

1994 
The concentration of hydrogen in solution near the surface of silicon exposed to an electron cyclotron resonance (ECR) plasma was determined by measuring the flux of hydrogen permeating to subsurface microcavities. The energy and flux of hydrogen impinging onto the surface from the plasma was also measured. A model is described which predicts the concentration of hydrogen in solution from the energy and flux of the impinging hydrogen. The measured solution concentrations were ∼10−9 H/Si at 600 °C and ∼10−8 H/Si at 400 °C, in fairly good agreement with the model. The absence of accumulation of immobile hydrogen near the surface indicates that lattice defects, which strongly trap hydrogen, were not produced by the ECR plasma. This study establishes a connection between the properties of the ECR plasma and the concentration of mobile hydrogen in silicon samples exposed to the plasma, which allows improved control over passivation of defects and dopants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []