Effects of nitrogen fertilization and drought on hydrocyanic acid accumulation and morpho-physiological parameters of sorghums.

2020 
BACKGROUND Nitrogen fertilization can increase sorghum yield and quality and the hydrocyanic acid (HCN) accumulation in plants, increasing the risk of animal toxicity, particularly under drought conditions. In this study, plants of three sorghum genotypes (sweet sorghum, sudangrass and hybrid sorghum) were supplemented with nitrogen (0, 60, 90 and 120 kg N ha-1 ) under well-watered and drought-stressed conditions, aiming to investigate the responses of morpho-physiological parameters and HCN accumulation to drought and nitrogen fertilization. RESULTS Drought caused a decline in growth and photosynthesis. Average HCN content increased by 27.85% in drought-stressed plants when compared with those in well-watered plants. Drought increased the proline and soluble protein content, the content of O2- , H2 O2 and malondialdehyde (MDA), and the activities of antioxidant enzymes in leaves of all three genotypes. Maximum plant growth and higher plant nutrient content (nitrogen and phosphorus) were observed at 120 kg N ha-1 , followed by 90 and 60 kg N ha-1 . However, a sharp increase in HCN content and a decrease in antioxidant enzyme activities were observed when nitrogen rates increased from 90 to 120 kg N ha-1 , suggesting that 90 kg N ha-1 might be better for sorghums under drought conditions. CONCLUSION These results suggest that optimum nitrogen application on sorghum under drought conditions could achieve a balance between plant defense and food safety, attributed to the reduced MDA, O2- and H2 O2 accumulation, the improvement in photosynthesis parameters, the increase in soluble protein and proline content, and the increase in antioxidant enzyme activities. © 2020 Society of Chemical Industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    1
    Citations
    NaN
    KQI
    []