Study on the regulation mechanism of lipopolysaccharide on oxidative stress and lipid metabolism of bovine mammary epithelial cells.

2021 
The long-term feeding of a high-concentrate diet (the concentrate ratio is greater than 60 %) leads to mammary gland inflammatory response in ruminants and decreased quality in dairy cows and affects the robust development of the dairy industry. The main reason is closely related to elevated lipopolysaccharide (LPS) in the body. In this experiment, a bovine mammary epithelial cell line (MAC-T) was used as a model, and LPS at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1000 ng/ml, 10000 ng/ml) was added to the cells. The cell survival rate, oxidative stress indicators, total lipid droplet area, triglyceride content and key genes regulating lipid metabolism were detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), assay kit, microscope observation and RT-PCR methods to explore the regulatory mechanism of mammary health and milk fat synthesis. The results showed that compared with those of the control group, the survival rates of cells were significantly decreased after 9 h of stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.01). The contents of superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) in cells were significantly decreased (P<0.05). Compared with that of the control group, the content of malondialdehyde (MDA) in cells was significantly increased (P<0.05) after stimulation with 10000 ng/ml LPS for 9 h. After 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS, the total lipid drop area and triglyceride (TG) content of MAC-T cells were significantly decreased (P<0.05). The expression levels of fatty acid synthesis-related genes Acetyl-CoA carboxylase (ACC) and Stearoyl-CoA desaturase 1 (SCD-1) were significantly decreased after 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS (P<0.05), while the expression levels of Fatty Acid synthetase (FAS) were significantly decreased after stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.05). TG synthesis by the related gene Diacylglycerol acyltransferase-1 (DGAT1) was significantly lower than that of the control group after stimulation with 1000 ng/ml and 10000 ng/ml LPS for 9 h (P<0.05), and Diacylglycerol acyltransferase-2 (DGAT2) also showed a significant decrease after 10000 ng/ml LPS stimulation (P<0.05). In conclusion, adding different concentrations of LPS to MAC-T cells not only led to a decrease in cell activity, resulting in oxidative damage, but also affected fatty acid and TG synthesis, which may ultimately be closely related to the decrease in milk fat synthesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []