Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase

2020 
Abstract Nanozymes become currently a frontier of chemical research. However, exploiting a novel nanozyme with high activity, good stability and reproducibility is challenging. Here, size-controllable Fe-N/C nanozymes containing exclusive single Fe atoms coordinated Fe-Nx sites were succesfully prepared through a facile pyrolysis of size controllable Fe-Zn ZIFs precursors. The Fe-N/C nanozymes exhibit exceptional high oxidase-mimicking activity able to catalyze oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) by dissolved oxygen to generate blue product. Their catalytic activities can be regulated by modulating the molar ratios of methanol to metal salts (e.g., Fe and Zn) through which the size controllable Fe-Zn ZIFs precursors are obtained. Upon introduction of ascorbic acid (AA) into Fe-N/C/TMB system, complete inhibition of TMB oxidation was observed, resulting in significant decline in absorbance with a clear color change. In the presence of alkaline phosphatase (ALP), ascorbic acid 2-phosphate (AAP) is hydrolyzed to produce ascorbic acid (AA). When coupled with AAP, a novel colorimetric biosensor platform was fabricated for ALP activity screening in the range of 0.05 U/L-100 U/L (four orders of magnitude) with an ultra-low limit of detection of 0.02 U/L. The work provides a promising strategy to rationally design the transition metal-N/C single-atom nanozyme with high oxidase-like activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    65
    Citations
    NaN
    KQI
    []