Fatigue behavior and stress distribution of molars restored with MOD inlays with and without deep margin elevation.

2021 
This study evaluated the effect of deep margin elevation (DME) and restorative materials (leucite-reinforced glass–ceramics [C] vs. indirect resin composite [R]) on the fatigue behavior and stress distribution of maxillary molars with 2-mm deep proximal margins restored with MOD inlay. Fifty-two extracted human third molars were randomly assigned into four groups (n = 13): C; DME + C; R; and DME + R. Inlays were fabricated in CAD-CAM and bonded to all teeth. The fatigue behavior was assessed with the stepwise stress test (10,000 cycles/step; step = 50 N; 20 Hz; initial load = 200 N). Fatigue failure loads and the number of cycles were analyzed with 2-way ANOVA and Tukey’s test (p   0.05). For the material factor, the load and number of cycles for failure were statistically higher in the R groups (p < 0.05). The finite element analysis showed that resin composite inlays concentrated more stress in the tooth structure, while ceramic inlays concentrated more stress in the restoration. Non-reparable failures were more frequent in the resin composite inlays groups. DME was not negative for fatigue and biomechanical behaviors. Resin composite inlays were more resistant to the fatigue test, although the failure mode was more aggressive. DME does not impair mechanical behavior. Resin composite inlays failed at higher loads but with a more aggressive failure mode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    1
    Citations
    NaN
    KQI
    []