Tentative breakpoints and areas of technical uncertainty for early reading automated disc diffusion for Enterobacterales.

2020 
BACKGROUND: Disc diffusion is a reliable, accurate and cost-efficient procedure for antimicrobial susceptibility testing (AST) but requires long (18-24 h) incubation times. Reading of disc diffusion after short incubation times (6-8 h) by automated systems is feasible but should be categorized with time-adapted breakpoints to reduce errors. OBJECTIVES: This study systematically compared early readings (6 and 8 h) of disc diffusion using an automated system with that of the standard 18 h EUCAST method. Time-adapted tentative breakpoints were proposed to discriminate susceptible from resistant isolates and areas of technical uncertainty were defined to minimize the risk of errors. METHODS: A total of 1106 Enterobacterales isolates with a wide variety of resistance mechanisms and resistance profiles were included. All isolates were analysed for susceptibility to amoxicillin/clavulanic acid, ceftriaxone, cefepime, meropenem, ciprofloxacin and gentamicin using the automated WASPLabTM system. Part of the collection (515 isolates) was also analysed for susceptibility to an additional 10 antibiotics. RESULTS: Separation between WT and non-WT populations was poorer at early incubation times than following standard incubation. Editing of rapid automated AST results after 6 and 8 h incubation with time-adapted breakpoints resulted in 84.0% and 88.5% interpretable results with assignment to the resistant or susceptible category. Major error and very major error rates for the 6 h readings were only 0.4% and 0.3%, virtually identical to those of 18 h AST reading. CONCLUSIONS: Time-adapted clinical breakpoints in disc diffusion testing for Enterobacterales allow for accurate automated AST interpretation after shortened incubation times for a large number of antibiotics, with the additional possibility of subsequent confirmation after 18 h incubation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []