Inductively coupled plasma chemical vapour deposited AlOx/SiNy layer stacks for applications in high-efficiency industrial-type silicon solar cells

2013 
Abstract Passivated emitter and rear cells (PERC) are considered to be the next generation of industrial-type screen-printed silicon solar cells. Deposition methods for rear passivation layers have to meet both the high-throughput and low-cost requirements of the PV industry in combination with high-quality surface passivation properties. In this paper, we evaluate and optimise a novel deposition technique for AlO x passivation layers by applying an inductively coupled plasma (ICP) plasma-enhanced chemical vapour deposition (PECVD) process. The ICP AlO x deposition process enables high deposition rates up to 5 nm/s as well as excellent surface recombination velocities below 10 cm/s after firing. A fixed negative charge of −4×10 12  cm −2 is measured for ICP AlO x single layers with an interface state density of 11.0×10 11  eV −1  cm −2 at midgap position. When applied to PERC solar cells the ICP AlO x layer is capped with a PECVD SiN y layer. We achieve independently confirmed conversion efficiencies of up to 20.1% for large-area (15.6×15.6 cm 2 ) PERC solar cells with screen-printed metal contacts and ICP AlO x /SiN y rear side passivation on standard boron-doped Czochralski-grown silicon wafers. The internal quantum efficiency reveals an effective rear surface recombination velocity S rear of (90±30) cm/s and an internal rear reflectance R b of (91±1)% which demonstrates the excellent rear surface passivation of the ICP AlO x /SiN y layer stack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    24
    Citations
    NaN
    KQI
    []