Preferential Pharmacological Inhibition of Nav1.6, but not Nav1.1, Abolishes Epileptiform Activity Induced by 4-AP in Mouse Cortical Slices

2020 
Brain isoforms of voltage-gated sodium channels (VGSCs) have distinct cellular and subcellular expression patterns as well as functional roles that are critical for normal physiology as aberrations in their expression or activity lead to pathophysiological conditions. In this study, we asked how inhibition of select isoforms of VGSCs alters epileptiform activity to further parse out the roles of VGSCs in the brain. We first determined the relative selectivity of recently discovered small molecule, aryl sulfonamide, inhibitors (ICA-121431 and Compound 801) against Nav1.1, Nav1.2, and Nav1.6 activity using whole-cell patch clamp recordings obtained from HEK293 cells. To test the effects of these inhibitors on epileptiform activity, we obtained multielectrode array (MEA) recordings from mouse cortical slices in the presence of 4-aminopyridine (4-AP) to induce epileptiform activity. We found that the ICA-121431 and Compound 801 compounds are relatively selective for Nav1.1 and Nav1.6, respectively. From the MEA recordings, we found that inhibition of Nav1.6 and Nav1.2 with 500nM of the Compound 801 compound completely abolishes ictal local field potentials induced by 4-AP, whereas inhibition of Nav1.1 with 500nM of the ICA-121431 compound had minimal effect on epileptiform activity induced by 4-AP. Due to the prominent expression of Nav1.1 in inhibitory neurons, we asked whether inhibition of Nav1.1 alone alters activity. We found that, indeed, inhibition of Nav1.1 with the ICA-121431 compound increased basal activity in the absence of 4-AP. These findings expand our current understanding of the roles of VGSC isoforms in the brain and suggest that selective targeting of Nav1.6 may be a more efficacious treatment strategy for epileptic syndromes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    1
    Citations
    NaN
    KQI
    []