Influence of substituent on equilibrium of benzoxazine synthesis from Mannich base and formaldehyde

2014 
N-Substituted aminomethylphenol (Mannich base) and 3,4-dihydro-2H-3-substituted 1,3-benzoxazine (benzoxazine) were synthesized from substituted phenol (p-cresol, phenol, p-chlorophenol), substituted aniline (p-toluidine, aniline, p-chloroaniline) and formaldehyde to study influence of substituent on equilibrium of benzoxazine synthesis from Mannich base and formaldehyde. 1H-NMR and charges of nitrogen and oxygen atoms illustrate effect of substituent on reactivity of Mannich base, while oxazine ring stability is characterized by differential scanning calorimetry (DSC) and C–O bond order. Equilibrium constants were tested from 50 °C to 80 °C, and the results show that substituent attached to phenol or aniline has same impact on reactivity of Mannich base; however, it has opposite influence on oxazine ring stability and equilibrium constant. Compared with the phenol–aniline system, electron-donating methyl on phenol or aniline increases the charge of nitrogen and oxygen atoms in Mannich base. When the methyl group is located at para position of phenol, oxazine ring stability increases, and the equilibrium constant climbs, whereas when the methyl group is located at the para position of aniline, oxazine ring stability decreases, the benzoxazine hydrolysis tends to happen and equilibrium constant is significantly low.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    13
    Citations
    NaN
    KQI
    []