A fast time domain solver for the equilibrium Dyson equation.

2021 
We consider the numerical solution of the real time equilibrium Dyson equation, which is used in calculations of the dynamical properties of quantum many-body systems. We show that this equation can be written as a system of coupled, nonlinear, convolutional Volterra integro-differential equations, for which the kernel depends self-consistently on the solution. As is typical in the numerical solution of Volterra-type equations, the computational bottleneck is the quadratic-scaling cost of history integration. However, the structure of the nonlinear Volterra integral operator precludes the use of standard fast algorithms. We propose a quasilinear-scaling FFT-based algorithm which respects the structure of the nonlinear integral operator. The resulting method can reach large propagation times, and is thus well-suited to explore quantum many-body phenomena at low energy scales. We demonstrate the solver with two standard model systems: the Bethe graph, and the Sachdev-Ye-Kitaev model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    2
    Citations
    NaN
    KQI
    []