A high-performance laser energy meter based on anisotropic Seebeck effect in a strongly correlated electronic thin film

2013 
We have developed a high-performance laser energy meter based on anisotropic Seebeck effect in a strongly correlated electronic (SCE) thin film. SCE thin films, typically represented by high-temperature superconductor (HTS) cuprate and colossal magnetoresistance (CMR) manganite thin films, demonstrate tremendous anisotropic Seebeck effect. In this study, a La2/3Ca1/3MnO3 thin film grown on a tilted LaAlO3 substrate is tested with the fundamental, the second, the third, and the fourth harmonics (1064, 532, 355, 266 nm, respectively) of a Q-switched Nd:YAG laser over a wide range of temperatures from room temperature to 16 K. The peak-value of the laser-induced thermoelectric voltage signal shows a good linear relationship with the laser energy per pulse in the measured wavelength and temperature ranges. The combined advantages over other commercial laser detectors such as nanosecond-order response and spectrally broad and flat response over a wide range of temperatures, in situ real-time measurement, and energy savings, make the device an ideal candidate for next-generation laser detectors and laser power/energy meters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []