Extended Protein Ions Are Formed by the Chain Ejection Model in Chemical Supercharging Electrospray Ionization

2017 
Supercharging electrospray ionization can be a powerful tool for increasing charge states in mass spectra and generating unfolded ion structures, yet key details of its mechanism remain unclear. The structures of highly extended protein ions and the mechanism of supercharging were investigated using ion mobility-mass spectrometry. Head-to-tail-linked polyubiquitins (Ubq1–11) were used to determine size and charge state scaling laws for unfolded protein ions formed by supercharging while eliminating amino acid composition as a potential confounding factor. Collisional cross section was found to scale linearly with mass for these ions and several other monomeric proteins, and the maximum observed charge state for each analyte scales with mass in agreement with an analytical charge state scaling law for protein ions with highly extended structures that is supported by experimental gas-phase basicities. These results indicate that these highly unfolded ions can be considered quasi-one-dimensional, and collisi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    33
    Citations
    NaN
    KQI
    []