Fibrillar α-synuclein toxicity depends on functional lysosomal

2020 
Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein pre-formed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells) and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles, and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high dose liproxstatin-1 protecting via a lysosomal mechanism, we further demonstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells, but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    123
    References
    7
    Citations
    NaN
    KQI
    []